Python client
Manage unstructured vector stores in PostgreSQL.
Supabase provides a Python client called vecs
for managing unstructured vector stores. This client provides a set of useful tools for creating and querying collections in PostgreSQL using the pgvector extension.
Quick start#
Let's see how Vecs works using a local database. Make sure you have the Supabase CLI installed on your machine.
Initialize your project#
Start a local Postgres instance in any folder using the init
and start
commands. Make sure you have Docker running!
1# Initialize your project 2supabase init 3 4# Start Postgres 5supabase start
Create a collection#
Inside a Python shell, run the following commands to create a new collection called "docs", with 3 dimensions.
import vecs
# create vector store client
vx = vecs.create_client("postgresql://postgres:postgres@localhost:54322/postgres")
# create a collection of vectors with 3 dimensions
docs = vx.create_collection(name="docs", dimension=3)
Add embeddings#
Now we can insert some embeddings into our "docs" collection using the usert()
command:
import vecs
# create vector store client
docs = vecs.get_collection(name="docs")
# a collection of vectors with 3 dimensions
vectors=[
("vec0", [0.1, 0.2, 0.3], {"year": 1973}),
("vec1", [0.7, 0.8, 0.9], {"year": 2012})
]
# insert our vectors
docs.upsert(vectors=vectors)
Query the collection#
You can now query the collection to retrieve a relevant match:
import vecs
docs = vecs.get_collection(name="docs")
# query the collection filtering metadata for "year" = 2012
docs.query(
query_vector=[0.4,0.5,0.6], # required
limit=1, # number of records to return
filters={"year": {"$eq": 2012}}, # metadata filters
)
Deep Dive#
For a more in-depth guide on vecs
collections, see Managing collections.
Resources#
- Official Vecs Documentation: https://supabase.github.io/vecs/api
- Source Code: https://github.com/supabase/vecs